Surveillance dans le système : les données comme changement critique dans l'enseignement supérieur
DOI :
https://doi.org/10.18357/otessaj.2022.2.2.34Mots-clés :
surveillance, Les données, datafication, l'enseignement supérieur, systèmes de donnéesRésumé
Au cours des dernières décennies, les infrastructures de l'enseignement supérieur se sont de plus en plus numérisées et datafiées. La pandémie de COVID-19 a accéléré l'adoption des plateformes d'apprentissage en ligne, échangeant les murs de la salle de classe contre des systèmes numériques. Pourtant, les problèmes de surveillance, de respect de la vie privée et de discrimination que ces systèmes soulèvent sont peu compris par ceux qui enseignent et apprennent en leur sein. Cet article présente une enquête pilote de 2020 et une étude qualitative de 2021-2022 auprès des enseignants de l'enseignement supérieur à l'échelle mondiale. Ces projets ont exploré les façons dont les instructeurs de divers lieux et postes universitaires comprennent les données et les outils de classe en utilisant des questions indirectes sur les connaissances, les pratiques, les expériences et les perspectives. Cet article s'appuie sur ces études pour formuler les préoccupations concernant la datafication amplifiant les problèmes dans l'enseignement supérieur. Ses prémisses sont doubles : premièrement, si les enseignants de l'enseignement supérieur, en tant que travailleurs du savoir, ne sont pas informés des contextes dans lesquels ils enseignent et dirigent l'érudition, alors la construction d'une gouvernance partagée au sein de l'enseignement supérieur est inévitablement sapée. Deuxièmement, si les décideurs du corps professoral et des universités ne sont pas intentionnels quant à l'utilisation équitable et éthique des plateformes numériques dans l'enseignement supérieur, la vie privée et les données des étudiants sont en danger. Dans cet article conceptuel, nous décrivons les résultats qui définissent la datafication comme un changement critique dans la culture de l'enseignement supérieur.
Références
Andrejevic, M. (2012). Ubiquitous Surveillance. In Routledge Handbook of Surveillance Studies. Abingdon, Oxon: Routledge.
Applin, S. A. (2019, April 21). What we sacrifice for automation. Fast Company. https://www.fastcompany.com/90336550/how-much-are-we-sacrificing-for-automation
Avella, J., Kebritchi, M., Nunn, S. & Kanai, T. (2016). Learning analytics methods, benefits, and challenges in higher education: A systematic literature review. Online Learning, 20(2), 13-29. DOI: https://doi.org/10.24059/olj.v20i2.790
Bartlett, L., & Vavrus, F. (2017). Rethinking Case Study Research. Routledge. https://www.researchgate.net/publication/311831037_Rethinking_Case_Study_Research DOI: https://doi.org/10.4324/9781315674889
Beetham, H., Collier, A., Czerniewicz, L., Lamb, B., Lin, Y., Ross, J., Scott, A.-M., & Wilson, A. (2022). Surveillance Practices, Risks and Responses in the Post Pandemic University. Digital Culture & Education, 14(1). https://www.digitalcultureandeducation.com/volume-14-1
Benjamin, R. (2019). Race after technology: Abolitionist tools for the new Jim Code. Polity. DOI: https://doi.org/10.1093/sf/soz162
Blackmore, P. & Kandiko, C. (2011). Motivation in academic life: A prestige economy. Research in post-compulsory education, 16(4), 399-411. https://doi.org/10.1080/13596748.2011.626971 DOI: https://doi.org/10.1080/13596748.2011.626971
Bourdieu, P. (1984). Distinction: A social critique of the judgement of taste. Harvard University Press.
Bozkurt, A., Jung, I., Xiao, J., Vladimirschi, V., Schuwer, R., Egorov, G., ... & Rodes, V. (2020). A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education, 15(1), 1-126.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in DOI: https://doi.org/10.1191/1478088706qp063oa
Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa
Braun, V., & Clarke, V. (2022). Conceptual and design thinking for thematic analysis. DOI: https://doi.org/10.1037/qup0000196
Qualitative Psychology, 9(1), 3–26.
https://psycnet.apa.org/doiLanding? doi=10.1037%2Fqup0000196
Brinkman, B. (2013). An analysis of student privacy rights in the use of plagiarism detection systems. Science and Engineering Ethics, 19(3), 1255–1266. https://doi.org/10.1007/s11948-012-9370-y DOI: https://doi.org/10.1007/s11948-012-9370-y
Brooks, C. (2021, September 20). Privacy Opt-Out May Lead to Inequities. Inside Higher Ed. https://www.insidehighered.com/views/2021/09/20/should-college-students-be-able-opt-out-data-sharing
Canadian Association of University Teachers. (2021). Shared governance. Quality education.
Cohney, S., Teixeira, R., Kohlbrenner, A., Narayanan, A., Kshirsagar, M., Shvartzshnaider, Y., & Sanfilippo, M. (2021). Virtual Classrooms and Real Harms: Remote Learning at U.S. Universities. ArXiv:2012.05867 [Cs]. http://arxiv.org/abs/2012.05867
Cukier, K., & Mayer-Schoenberger, V. (2013). The Rise of Big Data: How It’s Changing the Way We Think About the World. Foreign Affairs, 92(3), 28–40. https://www.jstor.org/stable/23526834
Currier, C. (2021). Unresolved Privacy and Ethics Issues Related to Learning Analytics in Higher Education and Academic Librarianship. Emerging Library & Information Perspectives, 4(1), 117–142. https://doi.org/10.5206/elip.v4i1.13463 DOI: https://doi.org/10.5206/elip.v4i1.13463
Dijck, J. van. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society, 12(2), 197–208. https://doi.org/10.24908/ss.v12i2.4776 DOI: https://doi.org/10.24908/ss.v12i2.4776
do Amaral, M. P. (2022). Comparative Case Studies: Methodological Discussion. In S. Benasso, D. Bouillet, T. Neves, & M. Parreira do Amaral (Eds.), Landscapes of Lifelong Learning Policies across Europe: Comparative Case Studies (pp. 41–60). Springer International Publishing. https://doi.org/10.1007/978-3-030-96454-2_3 DOI: https://doi.org/10.1007/978-3-030-96454-2_3
Erickson, K. (2018, July 17). The future of network effects: Tokenization and the end of extraction. Medium. Retrieved from https://medium.com/public-market/the-future-of-network-effects-tokenization-and-the-end-of-extraction-a0f895639ffb
Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin’s Press.
Facer, K. (2021). Futures in education: towards an ethical practice. UNESCO Futures of Education Report. https://unesdoc.unesco.org/ark:/48223/pf0000375792
Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304–317. https://doi.org/10.1504/IJTEL.2012.051816 DOI: https://doi.org/10.1504/IJTEL.2012.051816
Geertz, C. (1973). The Interpretation of Cultures. Basic Books. https://www.basicbooks.com/titles/clifford-geertz/the-interpretation-of-cultures/9780465093557/
Gilliard, C., & Culik, H. (2016, May 24). Digital Redlining, Access, and Privacy [Article]. Common Sense Education. https://www.commonsense.org/education/articles/digital-redlining-access-and-privacy
Hillman, T., Rensfeldt, A. B., & Ivarsson, J. (2020). Brave new platforms: a possible platform future for highly decentralised schooling. Learning, Media and Technology, 45(1), 7–16. https://doi.org/10.1080/17439884.2020.1683748 DOI: https://doi.org/10.1080/17439884.2020.1683748
Jones, W. D. (2020, February 24). Racial Profiling Goes High Tech with Facial Recognition. IEEE Spectrum. https://spectrum.ieee.org/do-you-have-the-right-complexion-for-facial-recognition
Kimmons, R., & Veletsianos, G. (2022). Proctoring Software in Higher Ed. Light + Learning. https://edtechbooks.org/light_learning_2022/proctoring_software DOI: https://doi.org/10.59668/487
Land, R. & Bayne, S. (2013). Screen or monitor. In Bayne, S., & Land, R. (Eds.), Education in Cyberspace (pp. 165-179). London, UK: Routledge Falmer. https://doi.org/10.4324/9780203391068 DOI: https://doi.org/10.4324/9780203391068
Lyon, D., Haggerty, K. D., & Bell, K. (2012). Introducing Surveillance Studies. In Routledge Handbook of Surveillance Studies. Abingdon, Oxon: R Jones outledge.
MacCarthy, M. (2014). Student Privacy: Harm and Context. International Review of Information Ethics, 21, 11–24. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3093299 DOI: https://doi.org/10.29173/irie366
Marx, G. T. (2012). Preface: “Your Papers Please”: Personal and Professional Encounters with Surveillance. In Routledge Handbook of Surveillance Studies. Abingdon, Oxon: Routledge.
McIlwain, C. (2020, June 3). Of course technology perpetuates racism. It was designed that way. | MIT Technology Review. MIT Technology Review. https://www.technologyreview.com/2020/06/03/1002589/technology-perpetuates-racism-by-design-simulmatics-charlton-mcilwain/?fbclid=IwAR1U-BC1BiN4eab4ROqPU-B9OAzQxROAeVUjgMrj5v-kAFpjUlMOe89c8Zc
Metcalf, J. (2022, March 17). Raising Algorithmic Impact Assessment. Medium. https://points.datasociety.net/raising-algorithmic-impact-assessment-1ebc6ba1bbeb
Noble, S.U. (2018). Algorithms of oppression: How search engines reinforce racism. New York, NY: NYU Press. DOI: https://doi.org/10.2307/j.ctt1pwt9w5
O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. London, UK: Allen Lane Penguin Books.
Pardo, A., & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438–450. https://doi.org/10.1111/bjet.12152 DOI: https://doi.org/10.1111/bjet.12152
Pyöriä, P. (2005). The concept of knowledge work revisited. Journal of Knowledge DOI: https://doi.org/10.1108/13673270510602818
Management, 9(3), 116–127. https://doi.org/10.1108/13673270510602818 DOI: https://doi.org/10.1108/13673270510602818
Raffaghelli, J. E., & Stewart, B. (2020). Centering complexity in ‘educators’ data literacy’ to support future practices in faculty development: a systematic review of the literature. Teaching in Higher Education, 25(4), 435–455. https://doi.org/10.1080/13562517.2019.1696301 DOI: https://doi.org/10.1080/13562517.2019.1696301
Sartre, J.-P. (1972). The Psychology of Imagination. Routledge.
Shilova, M. (2017, June 15). The concept of datafication: Definitions and examples. Apiumhub. https://apiumhub.com/tech-blog-barcelona/datafication-examples/
Siemens, G. (2013). Learning Analytics. American Behavioral Scientist, 57(10), 1380-1400. https://doi.org/10.1177/0002764213498851 DOI: https://doi.org/10.1177/0002764213498851
Slade, S., & Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510-1529. DOI: https://doi.org/10.1177/0002764213479366
Southerton, C. (2020). Datafication. In L. A. Schintler & C. L. McNeely (Eds.), Encyclopedia of Big Data (pp. 1–4). Springer International Publishing. https://doi.org/10.1007/978-3-319-32001-4_332-1 DOI: https://doi.org/10.1007/978-3-319-32001-4_332-1
Stake, R. E. (2005). Qualitative case studies. In N. K. Denzin & Y. S. Lincoln (Eds.), The Sage handbook of qualitative research (3rd ed., pp. 443–466). Thousand Oaks, CA: Sage.
Stanley, J. (2022, February 8). A Scary Demonstration of What Unchecked Face Recognition Could Look Like. American Civil Liberties Union. https://www.aclu.org/news/
Stewart, B. E., & Lyons, E. (2021). When the Classroom Becomes Datafied: A Baseline for Building Data Ethics Policy and Data Literacies Across Higher Education. Italian Journal of Educational Technology, 29(2), 54–68. https://doi.org/10.17471/2499-4324/1203
Tsai, Y. & Gasevic, D. (2017). Learning analytics in higher education – challenges and policies: A review of eight learning analytics policies. In Proceedings of the 7th International Learning Analytics Knowledge Conference Mar. 2017, pp. 233–242. DOI: https://doi.org/10.1145/3027385.3027400
Tufekci, Z. (2020). The Pandemic Is No Excuse to Surveil Students [Magazine]. The Atlantic. https://www.theatlantic.com/technology/archive/2020/09/pandemic-no-excuse-colleges-surveil-students/616015/
Williamson, B. (2015). Governing software: Networks, databases and algorithmic power in the digital governance of public education.” Learning, Media and Technology 40 (1): 83–105. doi: 10.1080/17439884.2014.924527 DOI: https://doi.org/10.1080/17439884.2014.924527
Williamson, B. (2020). A review of datafication and automation in higher education. University and College Union. https://www.ucu.org.uk/media/10947/The-automatic-university/pdf/ucus_the-automatic-university_jun20.pdf
Williamson, B., Bayne, S. & Shay, S. (2020). The datafication of teaching in higher education: Critical issues and perspectives. Teaching in Higher Education, 25(4), 351-365. https://doi.org/10.1080/13562517.2020.1748811 DOI: https://doi.org/10.1080/13562517.2020.1748811
Williamson, B., Eynon, R., & Potter, J. (2020). Pandemic politics, pedagogies and practices: digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology, 45(2), 107–114. https://doi.org/10.1080/17439884.2020.1761641 DOI: https://doi.org/10.1080/17439884.2020.1761641
Williamson, K., & Kizilcec, R. (2022). A Review of Learning Analytics Dashboard Research in Higher Education: Implications for Justice, Equity, Diversity, and Inclusion. LAK22: 12th International Learning Analytics and Knowledge Conference, 260–270. https://doi.org/10.1145/3506860.3506900 DOI: https://doi.org/10.1145/3506860.3506900
Youngstown State University. (2017, December 19). Principles and Practice of Shared
Governance. YSU. https://ysu.edu/provost/principles-practice-shared-governance
Yin, R. K. (2009). Case Study Research: Design and Methods (4th ed.). Thousand Oaks, CA: Sage Publications.
Zuboff, S. (2019). The age of surveillance capitalism: the fight for a human future at the new frontier of power. Profile Books.
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
(c) Tous droits réservés Samantha Szcyrek, Bonnie Stewart 2022
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.
Authors contributing to the OTESSA Journal agree to release their articles under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. This licence allows this work to be copied, distributed, remixed, transformed, and built upon for any purpose provided that appropriate attribution is given, a link is provided to the license, and changes made were indicated.
Authors retain copyright of their work and grant the OTESSA Journal right of first publication.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in the OTESSA Journal.