Détecter les innovateurs sur le terrain : perceptions et adoption de l’IA générative dans l’éducation par les enseignants
DOI :
https://doi.org/10.18357/otessaj.2025.5.1.89Mots-clés :
IA générative, GenAI, enseignantes, perceptions, attitudes, vues, TAM, acceptation de la technologie, diffusion de l'innovationRésumé
L'adoption de l'intelligence artificielle générative (GenAI) a gagné en popularité depuis fin 2022, suscitant des débats sur son rôle dans l'éducation. Comprendre la perception qu'ont les enseignants de cette technologie est un enjeu important, car ils sont considérés comme des acteurs clés de son intégration dans les processus d'enseignement et d'apprentissage. Cette recherche qualitative explore la perception qu'ont les enseignants du secondaire de GenAI, à l'aide d'un modèle d'acceptation technologique (TAM) adapté et du modèle de diffusion de l'innovation de Rogers. Le TAM, connu pour évaluer l'acceptation des technologies par les utilisateurs, a été utilisé pour évaluer les perceptions, tandis que le modèle de Rogers a permis de comprendre la répartition des enseignants selon les étapes d'adoption de GenAI, des innovateurs aux adopteurs tardifs. Les données ont été recueillies au moyen d'entretiens semi-directifs et d'une enquête en ligne auprès de 20 enseignants en exercice en Flandre, en Belgique. Les résultats révèlent des attitudes mitigées parmi les enseignants à l'égard de GenAI. Les participants se disent enthousiastes quant à son potentiel de gain de temps et d'avantages en matière d'apprentissage personnalisé, tout en exprimant de vives inquiétudes quant au plagiat, à la fiabilité de GenAI et à son éventuel impact négatif sur les capacités cognitives des élèves. L’étude souligne également le manque actuel de formation et de soutien suffisants pour les enseignants intégrant GenAI.
Statistiques
Références
Abel, V., Tondeur, J., & Sang, G. (2022). Teacher perceptions about ICT integration into classroom instruction. Education Sciences, 12(9). https://doi.org/10.3390/educsci12090609
Ahmad, F. B., Al-Nawaiseh, S. J., & Al-Nawaiseh, A. J. (2023). Receptivity level of faculty members in universities using digital learning tools: A UTAUT perspective. International Journal of Emerging Technologies in Learning, 18(13), 209–219. https://doi.org/10.3991/ijet.v18i13.39763
Alasadi, E., & Baiz, C. (2023). Generative AI in education and research: Opportunities, concerns, and solutions. Journal of Chemical Education, 100(8), 2965-2971. https://doi.org/10.1021/acs.jchemed.3c00323
Al-Abdullatif, A. M. (2024). Modeling teachers’ acceptance of generative artificial intelligence use in higher education: The role of AI literacy, intelligent TPACK, and perceived trust. Education Sciences, 14(11), 1209. https://doi.org/10.3390/educsci14111209
Al-Riyami, T., Al-Maskari, A., & Al-Ghnimi, S. (2023). Faculties’ behavioural intention toward the use of the fourth industrial revolution related-technologies in higher education institutions. International Journal of Emerging Technologies in Learning, 18(7), 159–177. https://doi.org/10.3991/ijet.v18i07.37051
Al-Zahrani, A. M. (2023). The impact of generative AI tools on researchers and research: Implications for academia in higher education. Innovations in Education and Teaching International, 1-15. https://doi.org/10.1080/14703297.2023.2271445
Alier, M., García-Peñalvo, F. J., & Camba, J. D. (2024). Generative artificial intelligence in education: From deceptive to disruptive. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 5–14. https://doi.org/10.9781/ijimai.2024.02.011
Alhwaiti, M. (2023). Acceptance of artificial intelligence application in the post-covid era and its impact on faculty members’ occupational well-being and teaching self efficacy: A path analysis using the UTAUT 2 model. Applied Artificial Intelligence, 37(1). https://doi.org/10.1080/08839514.2023.2175110
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215.
Barrett, A., & Pack, A. (2023). Not quite eye to AI: Student and teacher perspectives on the use of generative artificial intelligence in the writing process. International Journal of Educational Technology in Higher Education, 20(1), 59.
Carceller A. T. (2024). The ARTificial Revolution: Challenges for redefining Art Education in the paradigm of generative artificial intelligence. Number 45, June 2024. https://doi.org/10.1344/der.2024.45.84-90
Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y
Chan, C., & Lee, K. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environments, 10(1). https://doi.org/10.1186/s40561-023-00269-3
Chiu, T. (2023). The impact of generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments. https://doi.org/10.1080/10494820.2023.2253861
Dai, W., Lin, J., Jin, F., Li, T., Tsai, Y., Gasevic, D., & Chen, G. (2023, April 13). Can Large Language Models Provide Feedback to Students? A Case Study on ChatGPT. https://doi.org/10.35542/osf.io/hcgzj
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
Dehghani, H., Mashhadi, A. Exploring Iranian English as a foreign language teachers’ acceptance of ChatGPT in English language teaching: Extending the technology acceptance model. Education and Information Technologies, 29, 19813–19834 (2024). https://doi.org/10.1007/s10639-024-12660-9
Dunning, D. (2011). The Dunning–Kruger effect: On being ignorant of one's own ignorance. In Advances in experimental social psychology (Vol. 44, pp. 247-296). Academic Press.
Duong, C. D., Vu, T. N., & Ngo, T. V. N. (2023). Applying a modified technology acceptance model to explain higher education students’ usage of ChatGPT: A serial multiple mediation model with knowledge sharing as a moderator. The International Journal of Management Education, 21(3), 100883. https://doi.org/10.1016/j.ijme.2023.100883
García-Peñalvo, F. J., & Vázquez-Ingelmo, A. (2023). What do we mean by GenAI? A systematic mapping of the evolution, trends, and techniques involved in generative AI. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 7–16. https://doi.org/10.9781/ijimai.2023.07.006
Haesol, B., & Bozkurt, A. (2024). The untold story of training students with generative AI: Are
we preparing students for true learning or just personalization? Online Learning, 28(3), (1-9).
Hiniz, G. (2024). A year of generative AI in English language teaching and learning - A case study. Journal of Research on Technology in Education, 1–21. https://doi.org/10.1080/15391523.2024.2404132
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education Promises and Implications for Teaching and Learning. Boston: Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AIED-Book-Excerpt-CCR.pdf
Hsu, YC., Ching, YH. Generative Artificial Intelligence in Education, Part One: the Dynamic Frontier. TechTrends 67, 603–607 (2023). https://doi.org/10.1007/s11528-023-00863-9
Jauhiainen, J. S., & Guerra, A. G. (2023). Generative AI and ChatGPT in school children’s education: Evidence from a school lesson. Sustainability, 15(18), 14025. https://doi.org/10.3390/su151814025
Johnson, G. M., & Verdicchio, M. (2017). Anxiety about artificial intelligence in pre-service teachers: Implications for teacher education. Journal of Technology and Teacher Education, 25(3), 289-314. https://doi.org/10.1002/asi.23867
Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., & Papin, K. (2023). Generative AI and teachers’ perspectives on its implementation in education. Journal of Interactive Learning Research, 34(2), 313-338. https://www.learntechlib.org/primary/p/222363/
Khan, I., Khan, N., Jazim, F., Al-Mamary, Y. H., Abdulrab, M., & Al-Ghurbani, A. M. (2022). The effect of external factors in the use of technology among Ha’il university academic faculty: Evidence from Saudi Arabia. Journal of Applied Research in Higher Education, 14(4), 1319-1339. http://dx.doi.org/10.1108/JARHE-04-2021-0140
Kim, K., & Kwon, K. (2023). Exploring the AI competencies of elementary school teachers in South Korea. Computers and Education: Artificial Intelligence, 4. https://doi.org/10.1016/j.caeai.2023.100137
Kim, N. J., & Kim, M. K. (2022). Teacher’s perceptions of using an artificial intelligence-based educational tool for scientific writing. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.755914
Li, J. & Huang, J. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 63(C). https://doi.org/10.1016/j.techsoc.2020.101410
Lim, W., Gunasekara, A., Pallant, J., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. International Journal of Management Education, 21(2). https://doi.org/10.1016/j.ijme.2023.100790
Lozano, A., & Fontao, C. (2023). Is the education system prepared for the irruption of artificial intelligence? A study on the perceptions of students of primary education degree from a dual perspective: Current pupils and future teachers. Educational Science, 13(7). https://doi.org/10.3390/educsci13070733
Luo, T., Moore, D. R., Franklin, T., & Crompton, H. (2019). Applying a modified technology acceptance model to qualitatively analyze the factors affecting microblogging integration. International Journal of Social Media and Interactive Learning Environments, 6(2), 85-106. https://www.inderscience.com/offers.php?id=102143
Molenaar, I. (2022). Towards hybrid human-AI learning technologies. European Journal of Education, 57(4), 531-691. https://doi.org/10.1111/ejed.12527
Mutammimah, H., Rejeki, S., Kustini, S., & Amelia, R. (2024). Understanding Teachers' Perspective toward ChatGPT Acceptance in English Language Teaching. International Journal of Technology in Education, 7(2), 290-307. https://doi.org/10.46328/ijte.656
Nikolic, S., Wentworth, I., Sheridan, L., Moss, S., Duursma, E., Jones, R. A., Ros, M., & Middleton, R. (2024). A systematic literature review of attitudes, intentions and behaviours of teaching academics pertaining to AI and generative AI (GenAI) in higher education: An analysis of GenAI adoption using the UTAUT framework. Australasian Journal of Educational Technology, 40(6), 56–75. https://doi.org/10.14742/ajet.9643
Oolbekkink-Marchand, H. W., Van Driel, J. H., & Verloop, N. (2014). Perspectives on teaching and regulation of learning: A comparison of secondary and university teachers. Teaching in Higher Education, 19(7), 799–811. https://doi.org/10.1080/13562517.2014.934342
Parker, C., Scott, S., & Geddes, A. (2019). Snowball sampling. SAGE Research Methods Foundations. https://eprints.glos.ac.uk/6781/
Ravitch, S. M., & Carl, N. M. (2021). Qualitative research: Bridging the conceptual, theoretical, and methodological (2nd ed.). Sage Publications.
Rogers, E.M. (2003). Diffusion of innovations (5th ed.). Free Press.
Salinas-Navarro, D. E., Vilalta-Perdomo, E., Michel-Villarreal, R., & Montesinos, L. (2024). Using generative artificial intelligence tools to explain and enhance experiential learning for authentic assessment. Education Sciences, 14(1), 83. https://doi.org/10.3390/educsci14010083
Shahzad, M.F., Xu, S., & Asif, M. (2024). Factors affecting generative artificial intelligence, such as ChatGPT, use in higher education: An application of technology acceptance model. British Educational Research Journal, 51(2). https://doi.org/10.1002/berj.4084
Shulman, L.S., & Shulman, J.H. (2004). How and what teachers learn: A shifting perspective. Journal of Curriculum Studies, 36(2), pp. 257-271. http://dx.doi.org/10.1080/0022027032000148298
Tella, A. & Olasina, G. (2014). Predicting users' continuance intention toward e-payment system: An extension of the technology acceptance model. International Journal of Information Systems and Social Change, 5(1), 47-67. https://doi.org/10.4018/ijissc.2014010104
Van den Berg, G., & Du Plessis, E. (2023). ChatGPT and generative AI: Possibilities for its contribution to lesson planning, critical thinking, and openness in teacher education. Education Sciences, 13(10), 998. https://doi.org/10.3390/educsci13100998
Wang, K., Ruan, Q., Zhang, X., Fu, C., & Duan, B. (2024). Pre-service teachers’ GenAI anxiety, technology self-efficacy, and TPACK: Their structural relations with behavioral intention to design GenAI-assisted teaching. Behavioral Sciences, 14(5), 373. https://doi.org/10.3390/bs14050373
Wood, E., Mueller, J., Willoughby, T., Specht, J., & Deyoung, T. (2005). Teachers’ perceptions: Barriers and supports to using technology in the classroom. Education, Communication & Information, 5(2), 183-206. https://doi.org/10.1080/14636310500186214
Yau, K. W., Chai, C. S., Chiu, T. K., Meng, H., King, I., & Yam, Y. (2023). A phenomenographic approach on teacher conceptions of teaching artificial intelligence (AI) in K-12 schools. Education and Information Technologies, 28(1), 1041-1064. https://doi.org/10.1007/s10639-022-11161-x
Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: A multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1), 49. https://doi.org/10.1186/s41239-023-00420-7
Zhu, C., Sun, M., Luo, J., Li, T., & Whang, M. (2023). How to harness the potential of ChatGPT in education? Knowledge Management and E-Learning, 15(2), 133-152. https://doi.org/10.34105/j.kmel.2023.15.008
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
(c) Tous droits réservés Alanur Ahsen Dalyanci, Lobke Mast, Kristina Krushinskaia, Annelies Raes 2025

Cette œuvre est sous licence Creative Commons Attribution 4.0 International.
Authors contributing to the OTESSA Journal agree to release their articles under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. This licence allows this work to be copied, distributed, remixed, transformed, and built upon for any purpose provided that appropriate attribution is given, a link is provided to the license, and changes made were indicated.
Authors retain copyright of their work and grant the OTESSA Journal right of first publication.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in the OTESSA Journal.