Détecter les innovateurs sur le terrain : perceptions et adoption de l’IA générative dans l’éducation par les enseignants

Auteurs-es

DOI :

https://doi.org/10.18357/otessaj.2025.5.1.89

Mots-clés :

IA générative, GenAI, enseignantes, perceptions, attitudes, vues, TAM, acceptation de la technologie, diffusion de l'innovation

Résumé

L'adoption de l'intelligence artificielle générative (GenAI) a gagné en popularité depuis fin 2022, suscitant des débats sur son rôle dans l'éducation. Comprendre la perception qu'ont les enseignants de cette technologie est un enjeu important, car ils sont considérés comme des acteurs clés de son intégration dans les processus d'enseignement et d'apprentissage. Cette recherche qualitative explore la perception qu'ont les enseignants du secondaire de GenAI, à l'aide d'un modèle d'acceptation technologique (TAM) adapté et du modèle de diffusion de l'innovation de Rogers. Le TAM, connu pour évaluer l'acceptation des technologies par les utilisateurs, a été utilisé pour évaluer les perceptions, tandis que le modèle de Rogers a permis de comprendre la répartition des enseignants selon les étapes d'adoption de GenAI, des innovateurs aux adopteurs tardifs. Les données ont été recueillies au moyen d'entretiens semi-directifs et d'une enquête en ligne auprès de 20 enseignants en exercice en Flandre, en Belgique. Les résultats révèlent des attitudes mitigées parmi les enseignants à l'égard de GenAI. Les participants se disent enthousiastes quant à son potentiel de gain de temps et d'avantages en matière d'apprentissage personnalisé, tout en exprimant de vives inquiétudes quant au plagiat, à la fiabilité de GenAI et à son éventuel impact négatif sur les capacités cognitives des élèves. L’étude souligne également le manque actuel de formation et de soutien suffisants pour les enseignants intégrant GenAI.

Statistiques

Chargement des statistiques…

Références

Abel, V., Tondeur, J., & Sang, G. (2022). Teacher perceptions about ICT integration into classroom instruction. Education Sciences, 12(9). https://doi.org/10.3390/educsci12090609

Ahmad, F. B., Al-Nawaiseh, S. J., & Al-Nawaiseh, A. J. (2023). Receptivity level of faculty members in universities using digital learning tools: A UTAUT perspective. International Journal of Emerging Technologies in Learning, 18(13), 209–219. https://doi.org/10.3991/ijet.v18i13.39763

Alasadi, E., & Baiz, C. (2023). Generative AI in education and research: Opportunities, concerns, and solutions. Journal of Chemical Education, 100(8), 2965-2971. https://doi.org/10.1021/acs.jchemed.3c00323

Al-Abdullatif, A. M. (2024). Modeling teachers’ acceptance of generative artificial intelligence use in higher education: The role of AI literacy, intelligent TPACK, and perceived trust. Education Sciences, 14(11), 1209. https://doi.org/10.3390/educsci14111209

Al-Riyami, T., Al-Maskari, A., & Al-Ghnimi, S. (2023). Faculties’ behavioural intention toward the use of the fourth industrial revolution related-technologies in higher education institutions. International Journal of Emerging Technologies in Learning, 18(7), 159–177. https://doi.org/10.3991/ijet.v18i07.37051

Al-Zahrani, A. M. (2023). The impact of generative AI tools on researchers and research: Implications for academia in higher education. Innovations in Education and Teaching International, 1-15. https://doi.org/10.1080/14703297.2023.2271445

Alier, M., García-Peñalvo, F. J., & Camba, J. D. (2024). Generative artificial intelligence in education: From deceptive to disruptive. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 5–14. https://doi.org/10.9781/ijimai.2024.02.011

Alhwaiti, M. (2023). Acceptance of artificial intelligence application in the post-covid era and its impact on faculty members’ occupational well-being and teaching self efficacy: A path analysis using the UTAUT 2 model. Applied Artificial Intelligence, 37(1). https://doi.org/10.1080/08839514.2023.2175110

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215.

Barrett, A., & Pack, A. (2023). Not quite eye to AI: Student and teacher perspectives on the use of generative artificial intelligence in the writing process. International Journal of Educational Technology in Higher Education, 20(1), 59.

Carceller A. T. (2024). The ARTificial Revolution: Challenges for redefining Art Education in the paradigm of generative artificial intelligence. Number 45, June 2024. https://doi.org/10.1344/der.2024.45.84-90

Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y

Chan, C., & Lee, K. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environments, 10(1). https://doi.org/10.1186/s40561-023-00269-3

Chiu, T. (2023). The impact of generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments. https://doi.org/10.1080/10494820.2023.2253861

Dai, W., Lin, J., Jin, F., Li, T., Tsai, Y., Gasevic, D., & Chen, G. (2023, April 13). Can Large Language Models Provide Feedback to Students? A Case Study on ChatGPT. https://doi.org/10.35542/osf.io/hcgzj

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.

Dehghani, H., Mashhadi, A. Exploring Iranian English as a foreign language teachers’ acceptance of ChatGPT in English language teaching: Extending the technology acceptance model. Education and Information Technologies, 29, 19813–19834 (2024). https://doi.org/10.1007/s10639-024-12660-9

Dunning, D. (2011). The Dunning–Kruger effect: On being ignorant of one's own ignorance. In Advances in experimental social psychology (Vol. 44, pp. 247-296). Academic Press.

Duong, C. D., Vu, T. N., & Ngo, T. V. N. (2023). Applying a modified technology acceptance model to explain higher education students’ usage of ChatGPT: A serial multiple mediation model with knowledge sharing as a moderator. The International Journal of Management Education, 21(3), 100883. https://doi.org/10.1016/j.ijme.2023.100883

García-Peñalvo, F. J., & Vázquez-Ingelmo, A. (2023). What do we mean by GenAI? A systematic mapping of the evolution, trends, and techniques involved in generative AI. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 7–16. https://doi.org/10.9781/ijimai.2023.07.006

Haesol, B., & Bozkurt, A. (2024). The untold story of training students with generative AI: Are

we preparing students for true learning or just personalization? Online Learning, 28(3), (1-9).

Hiniz, G. (2024). A year of generative AI in English language teaching and learning - A case study. Journal of Research on Technology in Education, 1–21. https://doi.org/10.1080/15391523.2024.2404132

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education Promises and Implications for Teaching and Learning. Boston: Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AIED-Book-Excerpt-CCR.pdf

Hsu, YC., Ching, YH. Generative Artificial Intelligence in Education, Part One: the Dynamic Frontier. TechTrends 67, 603–607 (2023). https://doi.org/10.1007/s11528-023-00863-9

Jauhiainen, J. S., & Guerra, A. G. (2023). Generative AI and ChatGPT in school children’s education: Evidence from a school lesson. Sustainability, 15(18), 14025. https://doi.org/10.3390/su151814025

Johnson, G. M., & Verdicchio, M. (2017). Anxiety about artificial intelligence in pre-service teachers: Implications for teacher education. Journal of Technology and Teacher Education, 25(3), 289-314. https://doi.org/10.1002/asi.23867

Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., & Papin, K. (2023). Generative AI and teachers’ perspectives on its implementation in education. Journal of Interactive Learning Research, 34(2), 313-338. https://www.learntechlib.org/primary/p/222363/

Khan, I., Khan, N., Jazim, F., Al-Mamary, Y. H., Abdulrab, M., & Al-Ghurbani, A. M. (2022). The effect of external factors in the use of technology among Ha’il university academic faculty: Evidence from Saudi Arabia. Journal of Applied Research in Higher Education, 14(4), 1319-1339. http://dx.doi.org/10.1108/JARHE-04-2021-0140

Kim, K., & Kwon, K. (2023). Exploring the AI competencies of elementary school teachers in South Korea. Computers and Education: Artificial Intelligence, 4. https://doi.org/10.1016/j.caeai.2023.100137

Kim, N. J., & Kim, M. K. (2022). Teacher’s perceptions of using an artificial intelligence-based educational tool for scientific writing. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.755914

Li, J. & Huang, J. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 63(C). https://doi.org/10.1016/j.techsoc.2020.101410

Lim, W., Gunasekara, A., Pallant, J., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. International Journal of Management Education, 21(2). https://doi.org/10.1016/j.ijme.2023.100790

Lozano, A., & Fontao, C. (2023). Is the education system prepared for the irruption of artificial intelligence? A study on the perceptions of students of primary education degree from a dual perspective: Current pupils and future teachers. Educational Science, 13(7). https://doi.org/10.3390/educsci13070733

Luo, T., Moore, D. R., Franklin, T., & Crompton, H. (2019). Applying a modified technology acceptance model to qualitatively analyze the factors affecting microblogging integration. International Journal of Social Media and Interactive Learning Environments, 6(2), 85-106. https://www.inderscience.com/offers.php?id=102143

Molenaar, I. (2022). Towards hybrid human-AI learning technologies. European Journal of Education, 57(4), 531-691. https://doi.org/10.1111/ejed.12527

Mutammimah, H., Rejeki, S., Kustini, S., & Amelia, R. (2024). Understanding Teachers' Perspective toward ChatGPT Acceptance in English Language Teaching. International Journal of Technology in Education, 7(2), 290-307. https://doi.org/10.46328/ijte.656

Nikolic, S., Wentworth, I., Sheridan, L., Moss, S., Duursma, E., Jones, R. A., Ros, M., & Middleton, R. (2024). A systematic literature review of attitudes, intentions and behaviours of teaching academics pertaining to AI and generative AI (GenAI) in higher education: An analysis of GenAI adoption using the UTAUT framework. Australasian Journal of Educational Technology, 40(6), 56–75. https://doi.org/10.14742/ajet.9643

Oolbekkink-Marchand, H. W., Van Driel, J. H., & Verloop, N. (2014). Perspectives on teaching and regulation of learning: A comparison of secondary and university teachers. Teaching in Higher Education, 19(7), 799–811. https://doi.org/10.1080/13562517.2014.934342

Parker, C., Scott, S., & Geddes, A. (2019). Snowball sampling. SAGE Research Methods Foundations. https://eprints.glos.ac.uk/6781/

Ravitch, S. M., & Carl, N. M. (2021). Qualitative research: Bridging the conceptual, theoretical, and methodological (2nd ed.). Sage Publications.

Rogers, E.M. (2003). Diffusion of innovations (5th ed.). Free Press.

Salinas-Navarro, D. E., Vilalta-Perdomo, E., Michel-Villarreal, R., & Montesinos, L. (2024). Using generative artificial intelligence tools to explain and enhance experiential learning for authentic assessment. Education Sciences, 14(1), 83. https://doi.org/10.3390/educsci14010083

Shahzad, M.F., Xu, S., & Asif, M. (2024). Factors affecting generative artificial intelligence, such as ChatGPT, use in higher education: An application of technology acceptance model. British Educational Research Journal, 51(2). https://doi.org/10.1002/berj.4084

Shulman, L.S., & Shulman, J.H. (2004). How and what teachers learn: A shifting perspective. Journal of Curriculum Studies, 36(2), pp. 257-271. http://dx.doi.org/10.1080/0022027032000148298

Tella, A. & Olasina, G. (2014). Predicting users' continuance intention toward e-payment system: An extension of the technology acceptance model. International Journal of Information Systems and Social Change, 5(1), 47-67. https://doi.org/10.4018/ijissc.2014010104

Van den Berg, G., & Du Plessis, E. (2023). ChatGPT and generative AI: Possibilities for its contribution to lesson planning, critical thinking, and openness in teacher education. Education Sciences, 13(10), 998. https://doi.org/10.3390/educsci13100998

Wang, K., Ruan, Q., Zhang, X., Fu, C., & Duan, B. (2024). Pre-service teachers’ GenAI anxiety, technology self-efficacy, and TPACK: Their structural relations with behavioral intention to design GenAI-assisted teaching. Behavioral Sciences, 14(5), 373. https://doi.org/10.3390/bs14050373

Wood, E., Mueller, J., Willoughby, T., Specht, J., & Deyoung, T. (2005). Teachers’ perceptions: Barriers and supports to using technology in the classroom. Education, Communication & Information, 5(2), 183-206. https://doi.org/10.1080/14636310500186214

Yau, K. W., Chai, C. S., Chiu, T. K., Meng, H., King, I., & Yam, Y. (2023). A phenomenographic approach on teacher conceptions of teaching artificial intelligence (AI) in K-12 schools. Education and Information Technologies, 28(1), 1041-1064. https://doi.org/10.1007/s10639-022-11161-x

Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: A multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1), 49. https://doi.org/10.1186/s41239-023-00420-7

Zhu, C., Sun, M., Luo, J., Li, T., & Whang, M. (2023). How to harness the potential of ChatGPT in education? Knowledge Management and E-Learning, 15(2), 133-152. https://doi.org/10.34105/j.kmel.2023.15.008

Téléchargements

Publié-e

2025-05-20

Comment citer

Dalyanci, A. A., Mast, L., Krushinskaia, K., & Raes, A. (2025). Détecter les innovateurs sur le terrain : perceptions et adoption de l’IA générative dans l’éducation par les enseignants. Revue Sur l’Ouverture Et Les Technologies En Éducation, Dans La Société Et Pour l’avancement Des Savoirs, 5(1), 1–50. https://doi.org/10.18357/otessaj.2025.5.1.89

Numéro

Rubrique

Articles de Recherche