Thirty-Five Years of the Technology Acceptance Model: Insights From Meta-Analytic Structural Equation Modelling

Authors

DOI:

https://doi.org/10.18357/otessaj.2024.4.3.66

Keywords:

technology acceptance model, TAM, OSMASEM, structural equation modelling, meta-analytic structural equation modelling, one-step meta-analytic structural equation modelling

Abstract

This study uses one-step meta-analytic structural
equation modelling to delve into the technology
acceptance model’s (TAM) application within
education, assessing perceived usefulness, ease
of use, intentions to use, and actual technology
use. It synthesises previous findings to validate the
TAM's effectiveness and uncover the model’s
predictive power in educational settings. Significant
insights include the direct influence of perceived
ease of use on actual technology use, bypassing
intentions—a novel finding contrasting with the
TAM’s traditional formulation. The research
confirms the TAM’s enduring relevance, offering
valuable guidance for educational technology
integration.

Author Biography

Caleb Or, Independent researcher

Dr Caleb Or currently serves as a Senior Educational Developer at the Singapore Institute of Technology, bringing over 17 years of experience in the Ministry of Education, Singapore (MOE), where he held leadership roles such as Vice Principal at West Spring Primary School and West Grove Primary School. His contributions extend to the Institute of Technical Education (ITE) and Singapore Polytechnic (SP), where he served as Head of Examinations Development and Senior Educational Technologist, respectively. Caleb's expertise encompasses curriculum development, instructional design, and educational technology integration. He holds advanced degrees, including a Doctor of Education (EdD) from The University of Western Australia and a Master of Arts (M.A.) in Instructional Design and Technology from Nanyang Technological University Singapore. His general research interests lie in technology acceptance and online assessment.

 

References

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action-control: From cognition to behavior (pp. 11–39). Springer. https://doi.org/10.1007/978-3-642-69746-3_2 DOI: https://doi.org/10.1007/978-3-642-69746-3_2

Al-Adwan, A. S. (2020). Investigating the drivers and barriers to MOOCs adoption: The perspective of TAM. Education and Information Technologies, 25(6), 5771–5795. https://doi.org/10.1007/S10639-020-10250-Z DOI: https://doi.org/10.1007/s10639-020-10250-z

Al-Azawei, A., Parslow, P., & Lundqvist, K. (2017). Investigating the effect of learning styles in a blended e-learning system: An extension of the technology acceptance model (TAM). Australasian Journal of Educational Technology, 33(2). https://doi.org/10.14742/ajet.2741 DOI: https://doi.org/10.14742/ajet.2741

Albright, J. J., & Park, H. M. (2009). Confirmatory factor analysis using Amos, LISREL, Mplus, SAS/STAT CALIS. Semantic Scholar. https://api.semanticscholar.org/CorpusID:146232638

Aldraiweesh, A., & Alturki, U. (2023). Exploring factors influencing the acceptance of e-learning and students’ cooperation skills in higher education. Sustainability, 15(12), Article 9363. https://doi.org/10.3390/su15129363 DOI: https://doi.org/10.3390/su15129363

Ali, I., & Warraich, N. F. (2024). Meta-analysis of technology acceptance for mobile and digital libraries in academic settings using technology acceptance model (TAM). Global Knowledge, Memory and Communication. Advance online publication. https://doi.org/10.1108/GKMC-09-2023-0360 DOI: https://doi.org/10.1108/GKMC-09-2023-0360

Almulla, M. (2021). Technology acceptance model (TAM) and e-learning system use for education sustainability. Academy of Strategic Management Journal, 20(4), 1–13. https://www.abacademies.org/articles/technology-acceptance-model-tam-and-elearning-system-use-for-education-sustainability-11056.html

Al-Okaily, M., Alqudah, H., Matar, A., Lutfi, A., & Taamneh, A. (2020). Dataset on the acceptance of e-learning system among universities students under the COVID-19 pandemic conditions. Data in Brief, 32, Article 106176. https://doi.org/10.1016/j.dib.2020.106176 DOI: https://doi.org/10.1016/j.dib.2020.106176

Alqahtani, M. A., Alamri, M. M., Sayaf, A. M., & Al-Rahmi, W. M. (2022). Investigating students’ perceptions of online learning use as a digital tool for educational sustainability during the COVID-19 pandemic. Frontiers in Psychology, 13, Article 886272. https://doi.org/10.3389/fpsyg.2022.886272 DOI: https://doi.org/10.3389/fpsyg.2022.886272

Alshurideh, M. T., Abuanzeh, A., Al Kurdi, B., Akour, I., & AlHamad, A. (2023). The effect of teaching methods on university students’ intention to use online learning: Technology acceptance model (TAM) validation and testing. International Journal of Data and Network Science, 7(1), 235–250. https://doi.org/10.5267/j.ijdns.2022.10.009 DOI: https://doi.org/10.5267/j.ijdns.2022.10.009

Alyoussef, I. Y. (2022). Acceptance of a flipped classroom to improve university students’ learning: An empirical study on the TAM model and the unified theory of acceptance and use of technology (UTAUT). Heliyon, 8(12), Article e12529. https://doi.org/10.1016/j.heliyon.2022.e12529 DOI: https://doi.org/10.1016/j.heliyon.2022.e12529

Ayele, A. A., & Birhanie, W. K. (2018, December). Acceptance and use of e-learning systems: The case of teachers in technology institutes of Ethiopian universities. Applied Informatics, 5, Article 1. https://doi.org/10.1186/s40535-018-0048-7 DOI: https://doi.org/10.1186/s40535-018-0048-7

Bag, S., Aich, P., & Islam, M. A. (2022). Behavioral intention of “digital natives” toward adapting the online education system in higher education. Journal of Applied Research in Higher Education, 14(1), 16–40. https://doi.org/10.1108/JARHE-08-2020-0278 DOI: https://doi.org/10.1108/JARHE-08-2020-0278

Balog, A., & Pribeanu, C. (2010). The role of perceived enjoyment in the students’ acceptance of an augmented reality teaching platform: A structural equation modelling approach. Studies in Informatics and Control, 19(3), 319–330. https://doi.org/10.24846/v19i3y201011 DOI: https://doi.org/10.24846/v19i3y201011

Bazelais, P., Doleck, T., & Lemay, D. J. (2018). Investigating the predictive power of TAM: A case study of CEGEP students' intentions to use online learning technologies. Education and Information Technologies, 23(1), 93–111. https://doi.org/10.1007/s10639-017-9585-0 DOI: https://doi.org/10.1007/s10639-017-9587-0

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. https://doi.org/10.1037/0033-2909.107.2.238 DOI: https://doi.org/10.1037//0033-2909.107.2.238

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588 DOI: https://doi.org/10.1037//0033-2909.88.3.588

Bhatiasevi, V., & Naglis, M. (2016). Investigating the structural relationship for the determinants of cloud computing adoption in education. Education and Information Technologies, 21(5), 1197–1223. https://doi.org/10.1007/s10639-015-9376-6 DOI: https://doi.org/10.1007/s10639-015-9376-6

Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17(3), 303–316. https://doi.org/10.1177/0049124189017003004 DOI: https://doi.org/10.1177/0049124189017003004

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258. https://doi.org/10.1177/0049124192021002005 DOI: https://doi.org/10.1177/0049124192021002005

Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming (3rd ed.). Routledge. DOI: https://doi.org/10.4324/9781315757421

Camilleri, M. A., & Camilleri, A. C. (2022). The acceptance of learning management systems and video conferencing technologies: Lessons learned from COVID-19. Technology, Knowledge and Learning, 27(4), 1311–1333. https://doi.org/10.1007/s10758-021-09561-y DOI: https://doi.org/10.1007/s10758-021-09561-y

Chang, C.-C., Liang, C., Yan, C.-F., & Tseng, J.-S. (2013). The impact of college students' intrinsic and extrinsic motivation on continuance intention to use English mobile learning systems. The Asia-Pacific Education Researcher, 22, 181–192. https://doi.org/10.1007/s40299-012-0011-7 DOI: https://doi.org/10.1007/s40299-012-0011-7

Chang, C.-C., Yan, C.-F., & Tseng, J.-S. (2012). Perceived convenience in an extended technology acceptance model: Mobile technology and English learning for college students. Australasian Journal of Educational Technology, 28(5). https://doi.org/10.14742/ajet.818 DOI: https://doi.org/10.14742/ajet.818

Chang, C.-T., Hajiyev, J., & Su, C.-R. (2017). Examining the students' behavioral intention to use e-learning in Azerbaijan: The general extended technology acceptance model for e-learning approach. Computers & Education, 111, 128–143. https://doi.org/10.1016/j.compedu.2017.04.010 DOI: https://doi.org/10.1016/j.compedu.2017.04.010

Cheung, M. W.-L. (2014). Fixed-and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46(1), 29–40. https://doi.org/10.3758/s13428-013-0361-y DOI: https://doi.org/10.3758/s13428-013-0361-y

Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. John Wiley & Sons. https://doi.org/10.1002/9781118957813 DOI: https://doi.org/10.1002/9781118957813

Cheung, M. W.-L. (2019). A guide to conducting a meta-analysis with non-independent effect sizes in meta-analytic structural equation modeling. Neuropsychology Review, 29(4), 387–396. https://doi.org/10.1007/s11065-019-09415-6 DOI: https://doi.org/10.1007/s11065-019-09415-6

Cheung, M. W.-L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40–64. https://doi.org/10.1037/1082-989X.10.1.40 DOI: https://doi.org/10.1037/1082-989X.10.1.40

Chugh, R., Turnbull, D., Cowling, M. A., Vanderburg, R., & Vanderburg, M. A. (2023). Implementing educational technology in higher education institutions: A review of technologies, stakeholder perceptions, frameworks and metrics. Education and Information Technologies, 28(12), 16403–16429. https://doi.org/10.1007/s10639-023-11846-x DOI: https://doi.org/10.1007/s10639-023-11846-x

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results [Doctoral dissertation, Massachusetts Institute of Technology]. DSpace@MIT. https://dspace.mit.edu/bitstream/handle/1721.1/15192/14927137-MIT.pdf

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 DOI: https://doi.org/10.2307/249008

Davis, F. D., & Granić, A. (2024). The technology acceptance model: 30 years of TAM. Springer International Publishing AG. https://doi.org/10.1007/978-3-030-45274-2 DOI: https://doi.org/10.1007/978-3-030-45274-2

Davis, F. D., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: Three experiments. International Journal of Human-Computer Studies, 45(1), 19–45. https://doi.org/10.1006/ijhc.1996.0040 DOI: https://doi.org/10.1006/ijhc.1996.0040

De Vega, N., Basri, M., & Nur, S. (2023). Integrating mobile-assisted learning for a dynamic blended approach in higher education. Indonesian Journal of Electrical Engineering and Computer Science, 32(2), 819–827. https://doi.org/10.11591/ijeecs.v32.i2.pp819-827 DOI: https://doi.org/10.11591/ijeecs.v32.i2.pp819-827

DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60–95. https://doi.org/10.1287/isre.3.1.60 DOI: https://doi.org/10.1287/isre.3.1.60

Dimulescu, C. (2023). E-learning platform usage and acceptance of technology after the COVID-19 pandemic: The case of Transilvania University. Sustainability, 15(22), Article 16120. https://doi.org/10.3390/su152216120 DOI: https://doi.org/10.3390/su152216120

Elkaseh, A. M., Wong, K. W., & Fung, C. C. (2016). Perceived ease of use and perceived usefulness of social media for e-learning in Libyan higher education: A structural equation modeling analysis. International Journal of Information and Education Technology, 6(3), 192–199. https://doi.org/10.7763/IJIET.2016.V6.683 DOI: https://doi.org/10.7763/IJIET.2016.V6.683

Etemi, B. P., Uzunboylu, H., Latifi, S., & Abdigapbarova, U. (2024). The effect of the flipped learning approach on engineering students’ technology acceptance and self-directed learning perception. Sustainability, 16(2), Article 774. https://doi.org/10.3390/su16020774 DOI: https://doi.org/10.3390/su16020774

Farooq, A., Ahmad, F., Khadam, N., Lorenz, B., & Isoaho, J. (2020). The impact of perceived security on intention to use e-learning among students. In M. Chang, D. G. Sampson, R. Huang, D. Hooshyar, N.-S. Chen, Kinshuk, & M. Pedaste (Eds.), 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT) (pp. 360–364). IEEE. https://www.utupub.fi/bitstream/handle/10024/167088/IEEE%20ICALT2020_PS_ELS%20_CR.pdf?sequence=1 DOI: https://doi.org/10.1109/ICALT49669.2020.00115

Fearnley, M. R., & Amora, J. T. (2020). Learning management system adoption in higher education using the extended technology acceptance model. IAFOR Journal of Education, 8(2), 89–106. https://doi.org/10.22492/ije.8.2.05 DOI: https://doi.org/10.22492/ije.8.2.05

Festinger, L. (1957). A theory of cognitive dissonance. Stanford University Press. DOI: https://doi.org/10.1515/9781503620766

Fink, A., Spoden, C., & Frey, A. (2023). Determinants of higher education teachers’ intention to use technology-based exams. Education and Information Technologies, 28(6), 6485–6513. https://doi.org/10.1007/s10639-022-11435-4 DOI: https://doi.org/10.1007/s10639-022-11435-4

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley.

Gill, A. A., Malik, S., Iqbal, S., Haseeb, H., & Akhtar, N. (2020). An empirical study of higher education students’ intentions to use e-learning: Developing country perspective. PalArch's Journal of Archaeology of Egypt/Egyptology, 17(8), 1046–1058. https://archives.palarch.nl/index.php/jae/article/download/6642/6441

Gong, M., Xu, Y., & Yu, Y. (2004). An enhanced technology acceptance model for web-based learning. Journal of Information Systems Education, 15(4), 365–374. https://core.ac.uk/reader/301386730

Granić, A. (2023). Technology acceptance and adoption in education. In O. Zawacki-Richter & I. Jung (Eds.), Handbook of open, distance and digital education (pp. 183–197). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0351-9_11-1 DOI: https://doi.org/10.1007/978-981-19-2080-6_11

Gumbi, N. M., Sibaya, D., & Chibisa, A. (2024). Exploring pre-service teachers’ perspectives on the integration of digital game-based learning for sustainable STEM education. Sustainability, 16(3), Article 1314. https://doi.org/10.3390/su16031314 DOI: https://doi.org/10.3390/su16031314

Habes, M., Pasha, S. A., Ali, S., Elareshi, M., Ziani, A., & Bashir, B. A. (2022). Technology-enhanced learning acceptance in Pakistani primary education. In A. M. A. M. Al-Sartawi, A. Razzaque, & M. M. Kamal (Eds.), From the Internet of Things to the Internet of ideas: The role of artificial intelligence: Proceedings of European, Asian, Middle Eastern, North African Conference on Management & Information Systems 2022 (pp. 53–61). Springer International Publishing. https://doi.org/10.1007/978-3-031-17746-0_5 DOI: https://doi.org/10.1007/978-3-031-17746-0_5

Habibi, A., Riady, Y., Alqahtani, T. M., Muhaimin, M., Albelbisi, N. A., Jaya, A., & Yaqin, L. N. (2023). Drivers affecting Indonesian pre-service teachers’ intention to use m-learning: Structural equation modeling at three universities. E-Learning and Digital Media, 20(6), 519–538. https://doi.org/10.1177/20427530221118775 DOI: https://doi.org/10.1177/20427530221118775

Hair, J. F., Jr., Black, W. C., & Babin, B. J. (2006). Multivariate data analysis. Prentice Hall.

Hamutoglu, N. B. (2021). Testing the effects of technological barriers on high school teachers’ role in technology integration. Asian Journal of Distance Education, 16(1), 74–89. https://doi.org/10.5281/zenodo.4661743

Hsiao, C. H., & Yang, C. (2011). The intellectual development of the technology acceptance model: A co-citation analysis. International Journal of Information Management, 31(2), 128–136. https://doi.org/10.1016/j.ijinfomgt.2010.07.003 DOI: https://doi.org/10.1016/j.ijinfomgt.2010.07.003

Hsu, M. K., Wang, S. W., & Chiu, K. K. (2009). Computer attitude, statistics anxiety and self-efficacy on statistical software adoption behavior: An empirical study of online MBA learners. Computers in Human Behavior, 25(2), 412–420. https://doi.org/10.1016/j.chb.2008.10.003 DOI: https://doi.org/10.1016/j.chb.2008.10.003

Ibili, E., Resnyansky, D., & Billinghurst, M. (2019). Applying the technology acceptance model to understand maths teachers’ perceptions towards an augmented reality tutoring system. Education and Information Technologies, 24, 2653–2675. https://doi.org/10.1007/s10639-019-09925-z DOI: https://doi.org/10.1007/s10639-019-09925-z

Jak, S. (2015). Meta-analytic structural equation modeling. Springer. https://doi.org/10.1007/978-3-319-27174-3 DOI: https://doi.org/10.1007/978-3-319-27174-3

Jak, S., & Cheung, M. W.-L. (2022). Can findings from meta-analytic structural equation modeling in management and organizational psychology be trusted? PsyArXiv. https://psyarxiv.com/b3qvn/download?format=pdf

Juarez Collazo, J. N. A., Wu, X., Elen, J., & Clarebout, G. (2014). Tool use in computer-based learning environments: Adopting and extending the Technology Acceptance Model. International Scholarly Research Notices, 2014(1), Article 736931. https://doi.org/10.1155/2014/736931 DOI: https://doi.org/10.1155/2014/736931

Kalsi, P. S., & Kaur, R. (2024). Structural equation modelling (SEM) based assessment of students' m-learning behavioural adoption using an extended-simplified TAM. Migration Letters, 21(S2), 1333–1344. https://migrationletters.com/index.php/ml/article/view/7602

Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research, 44(3), 486–507. https://doi.org/10.1177/0049124114543236 DOI: https://doi.org/10.1177/0049124114543236

King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740–755. https://doi.org/10.1016/j.im.2006.05.003 DOI: https://doi.org/10.1016/j.im.2006.05.003

Kline, R. B. (2005). Methodology in the social sciences: Principles and practice of structural equation modeling (2nd ed.). Guilford Press.

Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.

Kusumadewi, A. N., Lubis, N. A., Prastiyo, R., & Tamara, D. (2021). Technology acceptance model (TAM) in the use of online learning applications during the Covid-19 pandemic for parents of elementary school students. Edunesia: Jurnal Ilmiah Pendidikan, 2(1), 272–292. https://doi.org/10.51276/edu.v2i1.120 DOI: https://doi.org/10.51276/edu.v2i1.120

Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), Article 50, 752–780. https://doi.org/10.17705/1CAIS.01250 DOI: https://doi.org/10.17705/1CAIS.01250

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191–204. https://doi.org/10.1016/S0378-7206(01)00143-4 DOI: https://doi.org/10.1016/S0378-7206(01)00143-4

Li, C., He, L., & Wong, I. A. (2021). Determinants predicting undergraduates’ intention to adopt e-learning for studying English in Chinese higher education context: A structural equation modelling approach. Education and Information Technologies, 26, 4221–4239. https://doi.org/10.1007/s10639-021-10462-x DOI: https://doi.org/10.1007/s10639-021-10462-x

Mailizar, M., Almanthari, A., & Maulina, S. (2021). Examining teachers’ behavioral intention to use e-learning in teaching of mathematics: An extended TAM model. Contemporary Educational Technology, 13(2), Article ep298. https://doi.org/10.30935/cedtech/9709 DOI: https://doi.org/10.30935/cedtech/9709

Marangunić, N., & Granić, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81–95. https://doi.org/10.1007/s10209-014-0348-1 DOI: https://doi.org/10.1007/s10209-014-0348-1

Marikyan, D. & Papagiannidis, S. (2023). Technology acceptance model. In S. Papagiannidis (Ed.), Theory Hub Book. TheoryHub. https://open.ncl.ac.uk/theories/1/technology-acceptance-model/

Martínez-Torres, M. D. R., Toral Marín, S. L., García, F. B., Vázquez, S. G., Oliva, M. A., & Torres, T. (2008). A technological acceptance of e-learning tools used in practical and laboratory teaching, according to the European higher education area. Behaviour & Information Technology, 27(6), 495–505. https://doi.org/10.1080/01449290600958965 DOI: https://doi.org/10.1080/01449290600958965

Mayer, P., & Girwidz, R. (2019). Physics teachers’ acceptance of multimedia applications—Adaptation of the technology acceptance model to investigate the influence of TPACK on physics teachers’ acceptance behavior of multimedia applications. Frontiers in Education, 4, Article 73. https://doi.org/10.3389/feduc.2019.00073 DOI: https://doi.org/10.3389/feduc.2019.00073

Musyaffi, A. M., Baxtishodovich, B. S., Afriadi, B., Hafeez, M., Adha, M. A., & Wibowo, S. N. (2024). New challenges of learning accounting with artificial intelligence: The role of innovation and trust in technology. European Journal of Educational Research, 13(1), 183–195. https://doi.org/10.12973/eu-jer.13.1.183 DOI: https://doi.org/10.12973/eu-jer.13.1.183

Pal, D., & Patra, S. (2021). University students’ perception of video-based learning in times of COVID-19: A TAM/TTF perspective. International Journal of Human–Computer Interaction, 37(10), 903–921. https://doi.org/10.1080/10447318.2020.1848164 DOI: https://doi.org/10.1080/10447318.2020.1848164

R Core Team. (2024). The R project for statistical computing. The R Foundation. https://www.R-project.org/

Rogers, E. M. (1962). Diffusion of innovations. Free Press of Glencoe.

Şahin, F., Doğan, E., & İlic, U. (2024, February 5). Instructors’ continuance intention to use technology in online and hybrid settings: Integrating psychological needs and emotions. International Journal of Human–Computer Interaction, 1–14. https://doi.org/10.1080/10447318.2024.2309002 DOI: https://doi.org/10.1080/10447318.2024.2309002

Şahin, F., & Şahin, Y. L. (2021). Examining the acceptance of e-learning systems during the pandemic: The role of compatibility, enjoyment and anxiety. International Technology and Education Journal, 5(1), 1–10. https://dergipark.org.tr/en/download/article-file/2882816

Sánchez-Mena, A., Martí-Parreño, J., & Aldás-Manzano, J. (2017). The effect of age on teachers' intention to use educational video games: A TAM approach. The Electronic Journal of E-Learning, 15(4), 355–366. https://files.eric.ed.gov/fulltext/EJ1154704.pdf

Sánchez‐Prieto, J. C., Huang, F., Olmos‐Migueláñez, S., García‐Peñalvo, F. J., & Teo, T. (2019). Exploring the unknown: The effect of resistance to change and attachment on mobile adoption among secondary pre‐service teachers. British Journal of Educational Technology, 50(5), 2433–2449. https://doi.org/10.1111/bjet.12822 DOI: https://doi.org/10.1111/bjet.12822

Saleh, S. S., Nat, M., & Aqel, M. (2022). Sustainable adoption of e-learning from the TAM perspective. Sustainability, 14(6), Article 3690. https://doi.org/10.3390/su14063690 DOI: https://doi.org/10.3390/su14063690

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach for explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35. https://doi.org/10.1016/j.compedu.2018.09.009 DOI: https://doi.org/10.1016/j.compedu.2018.09.009

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323–338. https://doi.org/10.3200/JOER.99.6.323-338 DOI: https://doi.org/10.3200/JOER.99.6.323-338

Shal, T., Ghamrawi, N., & Naccache, H. (2024). Leadership styles and AI acceptance in academic libraries in higher education. The Journal of Academic Librarianship, 50(2), Article 102849. https://doi.org/10.1016/j.acalib.2024.102849 DOI: https://doi.org/10.1016/j.acalib.2024.102849

Sharma, B. K., Kumar, V. V. R., & Bhatt, V. K. K. (2023). Factors influencing e-learning technology among youth in India: An extended TAM model. Management and Labour Studies, 49(3), 504–526. https://doi.org/10.1177/0258042X231208588 DOI: https://doi.org/10.1177/0258042X231208588

Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173–180. https://doi.org/10.1207/s15327906mbr2502_4 DOI: https://doi.org/10.1207/s15327906mbr2502_4

Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85–92. https://doi.org/10.1287/mnsc.42.1.85 DOI: https://doi.org/10.1287/mnsc.42.1.85

Taufiq-Hail, G. A. M., Al Farsi, M. J. A., Sarea, A., & Al Shamsi, I. R. H. (2023). The higher education students’ perception on IoT acceptance as an educational facilitating medium: Perception from Omani context. In M. Al Mubarak & A. Hamdan (Eds.), Technological sustainability and business competitive advantage (pp. 79–99). Springer International Publishing. https://doi.org/10.1007/978-3-031-35525-7_6 DOI: https://doi.org/10.1007/978-3-031-35525-7_6

Tawafak, R. M., Al-Rahmi, W. M., Almogren, A. S., Al Adwan, M. N., Safori, A., Attar, R. W., & Habes, M. (2023). Analysis of e-learning system use using combined TAM and ECT factors. Sustainability, 15(14), Article 11100. https://doi.org/10.3390/su151411100 DOI: https://doi.org/10.3390/su151411100

Teo, T. (2010). Examining the influence of subjective norm and facilitating conditions on the intention to use technology among pre-service teachers: A structural equation modeling of an extended technology acceptance model. Asia Pacific Education Review, 11, 253–262. https://doi.org/10.2190/EC.40.1.d DOI: https://doi.org/10.1007/s12564-009-9066-4

Thohir, M. A., Ahdhianto, E., Mas’ula, S., Yanti, F. A., & Sukarelawan, M. I. (2023). The effects of TPACK and facility condition on preservice teachers’ acceptance of virtual reality in science education course. Contemporary Educational Technology, 15(2), Article ep407. https://doi.org/10.30935/cedtech/12918 DOI: https://doi.org/10.30935/cedtech/12918

Tran, H. T. T., Nguyen, N. T., & Tang, T. T. (2023). Influences of subjective norms on teachers’ intention to use social media in working. Contemporary Educational Technology, 15(1), Article ep400. https://doi.org/10.30935/cedtech/12659 DOI: https://doi.org/10.30935/cedtech/12659

Unal, E., & Uzun, A. M. (2021). Understanding university students' behavioral intention to use Edmodo through the lens of an extended technology acceptance model. British Journal of Educational Technology, 52(2), 619–637. https://doi.org/10.1111/bjet.13046 DOI: https://doi.org/10.1111/bjet.13046

Venter, P., van Rensburg, M. J., & Davis, A. (2012). Drivers of learning management system use in a South African open and distance learning institution. Australasian Journal of Educational Technology, 28(2). https://doi.org/10.14742/ajet.868 DOI: https://doi.org/10.14742/ajet.868

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926 DOI: https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540 DOI: https://doi.org/10.2307/30036540

Virani, S. R., Saini, J. R., & Sharma, S. (2023). Adoption of massive open online courses (MOOCs) for blended learning: The Indian educators’ perspective. Interactive Learning Environments, 31(2), 1060–1076. https://doi.org/10.1080/10494820.2020.1817760 DOI: https://doi.org/10.1080/10494820.2020.1817760

Yaakop, A. Y., Mahadi, N., Ariffin, Z. Z., Hasan, Z. R. A., & Harun, M. (2020). Examining students’ continuance usage intention for web-based educational tools: A developed integrated structural model approach. Asian Academy of Management Journal, 25(1), 131–150. https://doi.org/10.21315/aamj2020.25.1.2 DOI: https://doi.org/10.21315/aamj2020.25.1.2

Yan, H., Zhang, H., Su, S., Lam, J. F. I., & Wei, X. (2022). Exploring the online gamified learning intentions of college students: A technology-learning behavior acceptance model. Applied Sciences, 12(24), Article 12966. https://doi.org/10.3390/app122412966 DOI: https://doi.org/10.3390/app122412966

Yang, H.-H., & Su, C.-H. (2017). Learner behaviour in a MOOC practice-oriented course: An empirical study integrating TAM and TPB. The International Review of Research in Open and Distributed Learning, 18(5), 35–63. https://doi.org/10.19173/irrodl.v18i5.2991 DOI: https://doi.org/10.19173/irrodl.v18i5.2991

Downloads

Published

2024-10-23

How to Cite

Or, C. (2024). Thirty-Five Years of the Technology Acceptance Model: Insights From Meta-Analytic Structural Equation Modelling. The Open/Technology in Education, Society, and Scholarship Association Journal, 4(3), 1–26. https://doi.org/10.18357/otessaj.2024.4.3.66

Issue

Section

Research Articles