Concevoir une cyberinfrastructure pour le partage des connaissances

Une étude de cas en bioacoustique

Auteurs-es

DOI :

https://doi.org/10.18357/otessaj.2024.4.3.72

Mots-clés :

la science ouverte, les sciences citoyennes, le développement d'une plateforme , les principes de la réutilisabilité, la priorité aux données

Résumé

FishSounds est un portail en ligne qui offre un accès ouvert et convivial aux recherches universitaires concernant les sons émis par les espèces de poissons. C'est le résultat d'une collaboration internationale entre étudiants, scientifiques et professionnels de l'information et est devenu une ressource utilisée dans le monde entier pour la recherche, l'éducation, le journalisme et l'intérêt général. Ce site Web n'est que le premier exemple d'une nouvelle approche de partage des connaissances et d'une cyberinfrastructure émergente pour l'érudition ouverte. La base de code derrière FishSounds a été conçue pour être réutilisable avec d'autres ensembles de données, et dans les années à venir, des portails supplémentaires connecteront les utilisateurs à des connaissances dans des domaines variés dans toutes les disciplines universitaires. Cette discussion examine le développement et la réception de FishSounds comme étude de cas pour la création de ces sites Web, appelés catalogues de connaissances en ligne consultables, ou SOCKs. Au fur et à mesure de sa diffusion publique, la plateforme SOCK continuera d'évoluer et de développer de nouvelles stratégies basées sur les enseignements tirés des différents publics accédant à FishSounds.

Références

Adkins, F. (2024, April 19). Boops, hums and farts: The mysterious world of fish communication. BBC. https://www.bbc.com/future/article/20240418-boops-hums-and-farts-the-mysterious-world-of-fish-communication

Anguswamy, R. & Frakes, W. B. (2012). A study of reusability, complexity, and reuse design principles. In P. Runeson (Chair), ESEM ’12: Proceedings of the ACM-IEEE international symposium on empirical software engineering and measurement (pp. 161–164). Association for Computing Machinery. https://doi.org/10.1145/2372251.2372280 DOI: https://doi.org/10.1145/2372251.2372280

Barroso, V. R., Xavier, F. C., & Ferreira, C. E. L. (2023). Applications of machine learning to identify and characterize the sounds produced by fish. ICES Journal of Marine Science, 80(7), 1854–1867. https://doi.org/10.1093/icesjms/fsad126 DOI: https://doi.org/10.1093/icesjms/fsad126

Bermes E., Fauduet L., & Peyrard S. (2010, August 10-15). A data first approach to digital preservation: The SPAR project [Conference presentation]. World Library and Information Congress: 76th IFLA General Conference and Assembly, Gothenburg, Sweden. https://www.ifla.org/past-wlic/2010/157-bermes-en.pdf

Binley, A. D., Vincent, J. G., Rytwinski, T., Soroye, P., & Bennett, J. R. (2023). Making the most of existing data in conservation research. Perspectives in Ecology and Conservation, 22(2), 122–128. https://doi.org/10.1016/j.pecon.2023.11.004 DOI: https://doi.org/10.1016/j.pecon.2023.11.004

Castellote, M., Clark, C. W., & Lammers, M. O. (2012). Acoustic and behavioural changes by fin whales (Balaenoptera physalus) in response to shipping and airgun noise. Biological Conservation, 147(1), 115–122. https://doi.org/10.1016/j.biocon.2011.12.021 DOI: https://doi.org/10.1016/j.biocon.2011.12.021

Costello, M. J., Bouchet, P., Boxshall, G., Fauchald, K., Gordon, D., Hoeksema, B. W., Poore, G. C. B., van Soest, R. W. M., Stöhr, S., Walter, T. C., Vanhoorne, B., Decock, W., & Appeltans, W. (2013). Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases. PloS one, 8(1), Article e51629. https://doi.org/10.1371/journal.pone.0051629 DOI: https://doi.org/10.1371/journal.pone.0051629

Cox, K. D., Looby, A., Vela, S., Riera, A., Bravo, S., Davies, H. L., Rountree, R., Spriel, B., Reynolds, L. K., Martin, C. W., Matwin, S., & Juanes, F. (2023). FishSounds Version 1.1: Data archive, user experience, and online resources. In A. N. Popper, J. Sisneros, A. D. Hawkins, & F. Thomsen (Eds.), The effects of noise on aquatic life: Principles and practical considerations (pp. 1–12). Springer. https://doi.org/10.1007/978-3-031-10417-6_35-1 DOI: https://doi.org/10.1007/978-3-031-10417-6_35-1

Dahlheim, M., & Castellote, M. (2016). Changes in the acoustic behavior of gray whales Eschrichtius robustus in response to noise. Endangered Species Research, 31, 227–242. https://doi.org/10.3354/esr00759 DOI: https://doi.org/10.3354/esr00759

Echevarría, L., Malerba, A., & Arechavala-Gomeza, V. (2021). Researcher’s perceptions on publishing “negative” results and open access. Nucleic Acid Therapeutics, 31(3), 185–189. https://doi.org/10.1089/nat.2020.0865 DOI: https://doi.org/10.1089/nat.2020.0865

Edgar, G. J., & Stuart-Smith, R. D. (2014). Systematic global assessment of reef fish communities by the Reef Life Survey program. Scientific Data, 1, Article 14007. https://doi.org/10.1038/sdata.2014.7 DOI: https://doi.org/10.1038/sdata.2014.7

Fauduet, L., & Peyrard, S. (2010, September 19–24). A data-first preservation strategy: Data management in SPAR [Conference presentation]. 7th International Conference on Preservation of Digital Objects (iPRES 2010), Vienna, Austria. http://www.ifs.tuwien.ac.at/dp/ipres2010/papers/fauduet-13.pdf

Froese, R., & Pauly, D. (Eds.). (2024). FishBase. https://fishbase.org/

Google Analytics. (2023). Google Analytics for FishSounds.net. Retrieved May 8, 2024, from https://analytics.google.com

Holt, D. E., & Johnston, C. E. (2014). Evidence of the Lombard effect in fishes. Behavioral Ecology, 25(4), 819–826. https://doi.org/10.1093/beheco/aru028 DOI: https://doi.org/10.1093/beheco/aru028

Holt, M. M., Noren, D. P., Veirs, V., Emmons, C. K., & Veirs, S. (2009). Speaking up: Killer whales (Orcinus orca) increase their call amplitude in response to vessel noise. The Journal of the Acoustical Society of America, 125(1), EL27–EL32. https://doi.org/10.1121/1.3040028 DOI: https://doi.org/10.1121/1.3040028

Kaartvedt, S., Ugland, K. I., Heuschele, J., & Solberg, I. (2021). Coordinated gas release among the physostomous fish sprat (Sprattus sprattus). Scientific Reports, 11(1), Article 13145. https://doi.org/10.1038/s41598-021-92585-2 DOI: https://doi.org/10.1038/s41598-021-92585-2

Kuznetsov, M. Y. (2009). Traits of acoustic signalization and generation of sounds by some schooling physostomous fish. Acoustical Physics, 55(6), 866–875. https://doi.org/10.1134/S1063771009060219 DOI: https://doi.org/10.1134/S1063771009060219

Looby, A., Bravo, S., Juanes, F., Rountree, R., Riera, A., Davies, H. L., Spriel, B., Vela, S., Reynolds, L. K., Martin, C. W., & Cox, K. (2023). The importance of context in the acoustic behaviors of marine, subtropical fish species. The Journal of the Acoustical Society of America, 154, 3252–3258. https://doi.org/10.1121/10.0022412 DOI: https://doi.org/10.1121/10.0022412

Looby, A., Cox, K., Bravo, S., Rountree, R., Juanes, F., Reynolds, L. K., & Martin, C. W. (2022). A quantitative inventory of global soniferous fish diversity. Reviews in Fish Biology and Fisheries, 32, 581–595. https://doi.org/10.1007/s11160-022-09702-1 DOI: https://doi.org/10.1007/s11160-022-09702-1

Looby, A., Cox, K., Bravo, S., Rountree, R., Juanes, F., Riera, A., Vela, S., Davies, H. L., Reynolds, L. K., & Martin, C. W. (2023). Fish sound production research: Historical practices and ongoing challenges. In A. N. Popper, J. Sisneros, A. D. Hawkins, & F. Thomsen (Eds.), The effects of noise on aquatic life: Principles and practical considerations (pp. 1–20). Springer. https://doi.org/10.1007/978-3-031-10417-6_92-1 DOI: https://doi.org/10.1007/978-3-031-10417-6_92-1

Looby, A., Riera, A., Vela, S., Cox, K., Bravo, S., Rountree, R., Juanes, F., Reynolds, L. K., & Martin, C. W. (2021). FishSounds website data repository (Version 7) [Data set]. Borealis. https://doi.org/10.5683/SP2/TACOUX

Looby, A., Vela, S., Cox, K., Riera, A., Bravo, S., Davies, H. L., Rountree, R., Reynolds, L. K., Martin, C. W., Matwin, S., & Juanes, F. (2023). FishSounds Version 1.0: A website for the compilation of fish sound production information and recordings. Ecological Informatics, 74, Article 101953. https://doi.org/10.1016/j.ecoinf.2022.101953 DOI: https://doi.org/10.1016/j.ecoinf.2022.101953

Luczkovich, J. J., Krahforst, C. S., Kelly, K. E., & Sprague, M. W. (2016). The Lombard effect in fishes: How boat noise impacts oyster toadfish vocalization amplitudes in natural experiments. Proceedings of Meetings on Acoustics, 27(1), Article 010035. https://doi.org/10.1121/2.0000340 DOI: https://doi.org/10.1121/2.0000340

McIver, E. L., Marchaterre, M. A., Rice, A. N., & Bass, A. H. (2014). Novel underwater soundscape: Acoustic repertoire of plainfin midshipman fish. Journal of Experimental Biology, 217(13), 2377–2389. https://doi.org/10.1242/jeb.102772 DOI: https://doi.org/10.1242/jeb.102772

Mercado, E., III, & Perazio, C. E. (2022). All units are equal in humpback whale songs, but some are more equal than others. Animal Cognition, 25(1), 149–177. https://doi.org/10.1007/s10071-021-01539-8 DOI: https://doi.org/10.1007/s10071-021-01539-8

Mohr, R. A., Whitchurch, E. A., Anderson, R. D., Forlano, P. M., Fay, R. R., Ketten, D. R., Cox, T. C., & Sisneros, J. A. (2017) Intra- and intersexual swim bladder dimorphisms in the plainfin midshipman fish (Porichthys notatus): Implications of swim bladder proximity to the inner ear for sound pressure detection. Journal of Morphology, 278(11), 1458–1468. https://doi.org/10.1002/jmor.20724 DOI: https://doi.org/10.1002/jmor.20724

Murchy, K. A., Rountree, R. A., Mouy, X., & Juanes, F. (2023). Preliminary examination of sounds produced by Pacific salmon (Oncorhynchus spp.) during their fall spawning migration. The Journal of the Acoustical Society of America, 154(4), 2665–2675. https://doi.org/10.1121/10.0021970 DOI: https://doi.org/10.1121/10.0021970

Neproshin, A. Y. (1972). Some physical characteristics of sound in Pacific salmons. Zoologicheskii Zhurnal, 51, 1025–1030.

Neproshin, A., & Kulikova, W. (1975). Sound production organs in salmonids. Journal of Ichthyology, 15, 481–485.

Nimpf, S., & Keays, D. A. (2020). Why (and how) we should publish negative data. EMBO reports, 21(1), Article e49775. https://doi.org/10.15252/embr.201949775 DOI: https://doi.org/10.15252/embr.201949775

Oppermann M., & Munzner T. (2020). Data-first visualization design studies. In A. Bezerianos, K. Hall, S. Huron, M. Kay, M. Meyer, & M. Sedlmair (Eds.), 2020 IEEE workshop on evaluation and beyond–Methodological approaches to visualization (BELIV 2020) (pp. 74–80). IEEE. https://www.doi.org/10.1109/BELIV51497.2020.00016 DOI: https://doi.org/10.1109/BELIV51497.2020.00016

Parsons, M. J. G., Lin, T.-H., Mooney, T. A., Erbe, C., Juanes, F., Lammers, M., Li, S., Linke, S., Looby, A., Nedelec, S. L., Opzeeland, I. V., Radford, C., Rice, A. N., Sayigh, L., Stanley, J., Urban, E., & Iorio, L. D. (2022). Sounding the call for a global library of underwater biological sounds. Frontiers in Ecology and Evolution, 10, Article 810156. https://doi.org/10.3389/fevo.2022.810156 DOI: https://doi.org/10.3389/fevo.2022.810156

Pirta, R., & Grabis, J. (2017). Evaluation of application architecture change cases: Building blocks reusability assessment method. In W. Abramowicz (Ed.), Business Information Systems Workshops: BIS 2017 (pp. 150–162). Springer. https://doi.org/10.1007/978-3-319-69023-0_14 DOI: https://doi.org/10.1007/978-3-319-69023-0_14

Rountree, R. A., Bolgan, M., & Juanes, F. (2019). How can we understand freshwater soundscapes without fish sound descriptions? Fisheries, 44(3), 137–143. https://doi.org/10.1002/fsh.10190 DOI: https://doi.org/10.1002/fsh.10190

Rountree, R. A., Gilmore, R. G., Goudey, C. A., Hawkins, A. D., Luczkovich, J. J., & Mann, D. A. (2006). Listening to fish: Applications of passive acoustics to fisheries science. Fisheries, 31(9), 433–446. https://doi.org/10.1577/1548-8446(2006)31[433:LTF]2.0.CO;2 DOI: https://doi.org/10.1577/1548-8446(2006)31[433:LTF]2.0.CO;2

Rountree, R. A., & Juanes, F. (2017). Potential of passive acoustic recording for monitoring invasive species: Freshwater drum invasion of the Hudson River via the New York canal system. Biological Invasions, 19(7), 2075–2088. https://doi.org/10.1007/s10530-017-1419-z DOI: https://doi.org/10.1007/s10530-017-1419-z

Salvador, R. B., Cavallari, D. C., Rands, D., & Tomotani, B. M. (2022). Publication practice in taxonomy: Global inequalities and potential bias against negative results. PLoS One, 17(6), Article e0269246. https://doi.org/10.1371/journal.pone.0269246 DOI: https://doi.org/10.1371/journal.pone.0269246

Spriel, B., Davies, H. L., Looby, A., Shafer, H., Vela, S., Juanes, F., & Cox, K. D. (2024). Fish sounds as an effective tool in marine science communication. Fisheries, 49(1), 28–34. https://doi.org/10.1002/fsh.11022 DOI: https://doi.org/10.1002/fsh.11022

Wilson, B., Batty, R. S., & Dill, L. M. (2003). Pacific and Atlantic herring produce burst pulse sounds. Proceedings of the Royal Society B: Biological Sciences, 271(suppl. 3), S95–S97. https://doi.org/10.1098/rsbl.2003.0107 DOI: https://doi.org/10.1098/rsbl.2003.0107

Yin W. P., & Tanik, M. M. (1991). Reusability in the real-time use of Ada. International Journal of Computer Applications in Technology, 4(2), 71–78. https://www.inderscience.com/info/inarticle.php?artid=62561

Téléchargements

Publié-e

2024-10-23

Comment citer

Vela, S., Looby, A., Spriel, B., Davies, H., Murchy, K., & Cox, K. (2024). Concevoir une cyberinfrastructure pour le partage des connaissances : Une étude de cas en bioacoustique. Revue Sur l’Ouverture Et Les Technologies En Éducation, Dans La Société Et Pour l’avancement Des Savoirs, 4(3), 1–13. https://doi.org/10.18357/otessaj.2024.4.3.72

Numéro

Rubrique

Articles de Pratique